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ABSTRACT

A game-theoretic m.del of arms races, based on Prisoners' Dilemma,
ic developed in which two players can initially choose any level of arming.
The higher the level, the greater the probability that this choice will
be viewed as esceslatory by the other player, who can retaliate subse-

quently if his own initial choice was not considered escalatory.

The quantitative, sequential choices define a Deescalation Game,
which contains an Escalation Equilibrium analogous to the noncooperative
outcome in Prisoners' Dilemma. More auspiciously, this game also contains
a Deescalation Equilibrium, which is analogous to the cooperative outcome

in Prisoners' Dilemma, ercept that it is stable (i.e., a Nash equilibrium).

The latter equilibrium is better for bhoth players than the Escalation
Equilibrium. Moreover, unlike Prisoners' Dilemma, either player can
initiate a move from the Pareto-inferior Escalation Equilibrium to the
Pareto-superior D:2escalation Equilibrium. The initial step is costless
and induces subsequent rational moves that benefit both players, even-
tually leading to the Deescalation Equilibrium. The relevance of this

analysis to the superpower arms race is discussed.




1. Introduction

The prevention of nuclear war is surely the most daunting problem
facing the world today. The road to si:ch a war, should one ever occur,
will probably not be a "bolt from the blue" -- say, a massive nuclear
strike by one superpower against the other and its allies, Rather, it
is likely to erupt in a period of extreme crisis occasioned by a
conventional conflict in which one side, facing imminent defeat, decides
it has no recourse except to use nuclear weapons, or threaten their
use. The conflict need not even involve a nuclear power directly but
only as an ally that feels compelled to come to the aid of a threatened

partner.

An arms race may trigger such a conflict. As tensions mount in
such a race, verbal threats and provocative military maneuvers may
precipitate war, which may then escalate as allies become involved.
Then, if one side's position or very existence is jeopardized, there
is a possibility that it would introduce or threaten to introduce

nuclear weapons to try to avert disaster.

In a previous paper, we showed what kinds of probabilisti. threats
appeared to be optimal to prevent confrontation situations that could
be modeled by the game of Chicken from exploding and wreaking destruction
on both sides.l In this paper we shift the focus back to the progenitor
of many crises that produce such perilous showdowns —-- namely, arms
races. Our aim is to show under what conditions deescalation rather

than escalation is a rational response to the staggering burdens that

an unrestrained arms race i:.poses on both sides.




For this purpose, we start from a model of an arms race based on
the infamous game of Prisoners' Dilemma, but we make major emendations
in the simple 2 x 2 version of this game to permit the players

(1) 4initially to choose any level of provocation along a disarm-

arm dimension; and

(2) subsequently to retaliate at any level to a provocation if

it is viewed as escalatory, or noncooperative, provided
their initial choice was considered cooperative.
We interpret these initial and subsequent actions in terms of proba-
bilities of escalation, and retaliation for escalation, which we
assume each player chooses at the beginning of play from an infinite

strategy space (specifically [0,1] x [0,1]).

After calculating maximin strategies in this continuous game, we
demonstrate that it contains two Nash equilibria, or stable outcomes.
The one we call the "Escalation Equilibrium" corresponds to the unique
Nash equilibrium in the classical 2 x 2 version of Prisoners' Dileuma
(te be described in section 2). The other, which we call the "Deescalation
Equilibrium," involves each side's cooperating initially with certainty
but retaliating with a specified probability to noncooperation by the
other side. Although the Deescalation Equilibrium is a promising
addition to the finite version of Prisoners' Dilemma, it does not
answer the nagging question of how one extricates oneself from the

Escalation Equilibrium of the Deescalation Game, which by definition

neither player has an incentive to depart f-om unilaterally.

The superpowers seem stuck at this noncooperative equilibrium

today. Happily for the players in the Deescalation Game, however,

S5




there is a trajectory or path by which they can travel from the Escala-

tion Equilibrium to the Deescalation Equilibrium. Surprisingly, either

player can initiate such a sequence with impunity, triggering subsequent

rational moves by the players that redound to the benefit of both,

eventually reaching the Deescalation Equilibrium. We briefly compare

this resolution of the trying dilemma posed by arms races -- particu-

larly that between the superpowers —- to other game-theoretic apprvaches,

arguing that our model offers a more realistic representation of the

superpower arms race than others, some of which, nonatheless, suggest

a similar resolution to our own.

2. Prisoners' Dilemma and the Superpower Arms Race

The 2 x 2 game of Prisoners' Dilemma, in which two players (Row

and Column) each have two strategies and can rank the resulting four

outcomes from best (4) to worst (1), is illustrated in Figure 1. The

first number in the ordered pair that specifies each outcome is assumed

FIGURE 1

OUTCOME MATRIX OF PRISONERS' DILEMMA

Column

Cooperate (C) Do not cooperate (C)

(3,3) (1,4)
Cooperate (C) Compromise Column wins

Row
- o fust
Do not cooperate {C) Row wins ap

Key: (x,y) = (rank of Row, rank of Column)
4 = best; 3 = next best; 2 = next worst; 1 = worst

Circled outcome is dash equilibrium
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to be the ranking of Row, and the second number the ranking of Column.

Thus, the outcome (3,3) is next-best for both players, but no
presumption is made about whether this outcome is closer to each
player's best (4) or next-worst (2) outcome. (Later we assume that
players can assign numerical values, or cardinal utilities, to the
outcom>s.) Because the two players do not rank any two outcomes the
same -- that is, there are no ties between ranks ~— this is a strictly

ordinal game.

The short-hand verbal descriptions given in Figure 1 for each
outcome are intended to convey the qualitative nature of the outcomes,
based on the players' rankings. Because this game is symmetrical
(i.e., the players rank the two outcomes along the main diagonal the
same, and the ranks of the off-diagonal outcomes are mirror images
of each other), the two players face the same problems of strategic

choice.

Each player is assumed to be able to choose between the strategies
of cooperation (C) and noncooperation (C). Each obtains his next-~best
outcome of 3 ("compromise') by choosing C -- if the other player also
does —— but both have an incentive to defect from this outcome to
obtain their best outcomes of 4 by choosing C when the other player
chooses C. Yet, if both choose cC, they bring upon themselves their
next-worst outcome ("trap'"). On the other hand, should one player
choose C when the other chooses C, the C-player "wins" by obtaining
his best outcome (4) at the same time that the C-pla;er suffers his

worst (1) outcome.




The dilemma in Prisoners' Dilemma is that both players have a
dominant strategy of choosing C: whatever the other player chooses
(C or C), C is better. But the choice of C by both ieads to (2,2),

which is Pareto-inferior since it is worse for both players than (3,3).

In addition, (2,2) is a Nash equilibrium — that is, neither player

has an incentive to deviate unilaterally from this outcome because he
would do worse, or at least not burter, if he did -- whereas (3,3)

. . . 2
is not stable in this sense.

Presumably, rational players would choose their dominant, or
unconditionally best, strategies of C, leading to the Pareto-inferior
(2,2) Nash equilibrium. Because of its stability, neither player would
be motivated to depart from (2,2), even though (3,3) is a better out-

come for both than (2,2). 1In fact, (3,3) is Pareto-superior since any

other outcome which is better for one player is worse for the other.
Should (3,3) somehow manage to be chosen, however, both players would
be tempted to depart from it to try to do still better, rendering it

uns table.

Other concepts of equilibrium distinguish (3,3) as a stable out-
come, but the rules of play they assume require that players act non-
myopically or farsightedly; moreover, they do not rule out (2.2) as
stable, too.3 If threats are possible in repeated play of Prisoners'
Dilemma under still different rules, however, the stability of (3,3)
is reinforced.4 Preplay negotiations can aiso lead to the (3,3) out-

come.

We shall introduce shortly the notion of a probabilistic threat

as well as a probabilistic initial strategy choice. But before doing
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that, it is worth pointing out that Prisoners' Dilemma is not a constant-

sum_game, in which what one player wins the other player loses. Rather,

it is a variable-sum game because the sum of the players' payoffs at
each outcome (if measured cardinally by utilities rather than ordinally

by ranks) may vary.

A variable-rum game is also a game of partial conflict, as opposed

to a (constant-sum) game of total conflict in which one player cannot

benefit except at the expense of another. Prisoners' Dilemma is not a
game of total counflict, for both players do worse at (2,2) than at (3,3),
which perhaps belies the name "partial conflict"” since (2,2) is, unfor-
tunately for the players, both the product of dominant strategies and

the unique Nash equilibrium. It is hard to see how the players can avoid

it without risking their worst outcomes.

As a model of the superpower arms race, this recalcitrant game
supports the logic of both sides' arming (noncooperation), even though
this outcome is Pareto-inferior to their disarming or, less ambitiously,
pursuing more limited policies of arms control (cooperation). Cooperation
is problematic because, as Garthoff put it, ''they [the Soviets] would
like to have an edge over us [at (1,4) if they are Column], just as we

would like to have an edge over them [at (4,1) if we are Row]."6

Prisoners' Dilemma elegantly captures this temptation to defect
from the cooperative outcome that, it seems, has inexorably led the
superpowers into a very costly arms race. Nevertheless, at the same
time that it offers a striking explanation of the fundamental incrac-

tability of this continuing conflict -- based only on the rational

behavior of the players -- it drastlcally simplifies the realities of the
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Superpower arms race.

Prisoners' Dilemma omits two salient features of the superpower
arms race that we believe need to be incorporated into a more realistic
model, the focus of our attention in the remainder of this paper.
First, a player does nct make a dichotomous choice between cooperation
(disarming) or noncooperation (arming) but rathe: chooses a kind or
level of action, or arms expenditures, that may be interpreted as being
escalatory or deescalatory. Second, in response to an initial choice
viewed as escalatory by his opponent, a player who was not viewed as
escalatory at the start may subsequently choose a new level of expendi-

tures that itself may be seen as escalatory or not.

In effect, players in the Deescalation Game that we shall describe
in the next section can choose initially to provoke or not provoke an
opponent at any level; if provoked, they can retaliate or not retaliate
at any level. Thereby we incorporate into our model not only quanti-
tative choices of any level of cooperativeness/noncooperativeness but
also sequential choices that permit players to respond if provoked.

The additional structure of quantitative and sequential choices in
Prisoners' Dilemma not only better mirrors, in our view, real-world
choices in the superpower arms race, but it also will enable us to
derive conditions under which it is rational for the players to be

cooperative in the Deescalation Game and therzby escape the (2,2) trap.

3. The Deescalation Game

The Deescalation Game is defined by the following rules:
(1) The final outcome will be one of the four outcomes of

Prisoners' Dilemma. The payoffs are the same as those
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(2)

(3)

(4)

of Prisoners' Diiemma, except that cardinal utilities
replace ordinal rankings. Thus T, and <4 signify the

highest payoffs fcr Row and Column, respectively, r,

and cl the lowest, etc.

The players do not choose initially between C and C, as in
Prisoners' Dilemma, but instead choose (unspecified)

actions that have associated a nonescalation probability

(s for Row and t for Column) and a complementary escalation
probability (l-s for Row and l-t for Column). With these
probabilities, their actions will be interpreted as cooperative
(C) and noncooperative (C) strategy choices, respectively.
If both players' initial choices are perceived as the same,
the game ends at that position (i.e., CC or CC). If one
players' choice is perceived as C and the other's as C,

the former player then chooses subsequent actions with an
associated nonretaliation probability (p for Column and q
for Row) and a complementary retaliation probability (1-p
for Column and 1-q for Row). With the retaliation proba-
bility, the conflict is escalated further to the final
outcome CC; otherwise it remains as before (at CC or CC).
The players choose their escalation probabilities and retali-
ation probabilities before play of the game. Play commences
when each player simultaneously chooses initial actions that
may be interpreted as either C or 6, with associated esca-
lation probabilities. One player may then choose subse-

quent actions, according to rule 3, with the associated

retaliation probability specified at the beginning of play.
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The Deescalation Game is represented in Figure 2. Note that

FIGURE 2

MATRIX REPRESENTATION OF DEESCALATION GAME

Column
t 1-t

Q(rlyca)*’(l_q) (rzycz)

s (r3,c3)
= (A-9)r,,q+(1-q)c,)
Row
p(r,,c)+(1-p) (r,,c,)
1-s (rz,cz)
= (pV(l—p)rz,(l-p)cz)
Key: (ri,cj) = (payoff to Row, payoff to Column)
T,y = best; ry,Cq = next best; r2,c2 = next worst; rl,c1 = worst
s,t = probabilities of nonescalation; p,q = probabilities of
nonresponse
Normalization: O =r < r, < r < r, =1;0=¢c,<c,<c,<¢c, =1

besides the fact that the initial strategy choices of the two players
are probabilities (with assumed underlying actions), rather than actions
(C and C) themselves, this payoff matrix differs from the Figure I cut-
come matrix in having expected payoffs rather than (certain) payoffs

as its off-diagonal entries. This is because we assume that if one
player is perceived to escalate, the other player's (probabilistic)
retaliation will be virtually instanteous, so it is proper to incluie

in the off-diagonal entries a combination of payoffs -- reflecting both

possible retaliation and possible nonretaliation -- by means of an

expected value.
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We assume, of course, that 0 = s, t, p, qQ £ 1 because they
represent probabilities. To simplify subsequent calculations, we
normalize the payoffs of the players so that the best and worst

payoffs are 1 and 0, respectively. Hence,

o
n
"
A
"
A
2]
A
2]
i

1

1.

o
1l
0
A
0
A
0
A
0
It

Because we assume the escalation and retaliation probabilities are
chosen independently by the players, the expected payoffs for Row and
Column are simply the sums of the four payoffs (expected payoffs) in
the Figure 2 matrix, each multiplied by the probability of its

occurrence:

ER(s,q;t,p) = str3+(l—s)t[p+(l—p)r2]+s(l—t)(l—q)r2+(l—s)(l—t)r2; (1)

EC(t,p;s,q) = stc3+(l-s)t(l—p)c2+s(1—t)[q+(l—q)c2] + (l—s)(l—t)cz. (2)

The introduction of escalation and retaliation probabilities into
the expected-payoff calculations requires some explanation and inter-
pretation. Essentially we assume that every initial action that a
player may take carries with it a probability of being interpreted as
escalatory by his opponent and, if it is, possibly drawing a response.
This response, like the initial action that may escalate the conflict,
is probabilistic in that it is not certain to constitute retaliation.
Rather, both initial actions and subsequent responses have probabilities
associated with their being viewed as escalatory and retaliatory,

respectively, thereby leading to different outcomes in the game.

Thus, for example, the probability that Row will provoke Column

13




by his choice is some escalation probability l-s. If Column is
provoked, and providing that he did not also provoke Row initially

(with escalation probability 1-t), Column will respond with a subsequent
action that (further) escalates the conflict to mutual noncooperation

with retaliation probability 1-p.

If neither player provoked the other [with joint probability st]
or each provoked the other [with joint probability (1-s)(1-t)], then
the retaliation probabilities never come into play, for we assume there
is (i) no need to retaliate for the choice of CC and (ii) no possi-
bility of retaliating for the choice of cc. Hence, the first and last
terms of ER and EC given by (1) and (2) do not include retaliation

probabilities.

The strategic problem that the players face is to choose both an
initial level of action (with an associated escalation probability) and
a subsequent level of response (with an associated retaliation proba-
bility). We assume, in interpreting probabilities in the Deescalation
Game, that the higher the level of (initial) escalation or (subsequent)
retaliation, the greater the probability that these actions will be
perceived as escalatory/retaliatory. Formally, then, we assume a
linkage between the degree of escalation/retaliation and the probability

that it will be interpreted as such by one's opponent.

When making their choices of initial and subsequent levels of
action (and hence probabilities) before play of the game, we assume
that the players know that their opponents will judge the level of these
actions exactly as they do themselves. Consequently, each player's
probability assessment of each level of action will coincide with his

opponent’'s. Thus, the players can assume that the four escalation
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and retaliation nrobpabilities in the two expected-payoff equations are

identical.

These probabilities become common knowledge once the levels of
action (with which they are in correspondence) are selected in the

Deescalation G:me. This information that is introduced into the play

of the game does not mitigate the problem of choosing the probabilities --

in ignorance of one's opponent's choices -- before play commences.

With respect to the retaliation probabilities, it should be
noted that they are not assumed to be a function of the escalation
probabilities. To be sure, the higher one player's escalation proba-
bility, the more likely his opponent's retaliation probability will
come into pla;, and hence the more likely retaliation will occur. But
since the retaliation as well as the escalation probabilities are
chosen before the start of the game, the former (for one player) are

necessarily independent of the latter (for the other).7

It is fair to ask why retaliation is ever a problem in Prisoners'
Dilemma; it would seem, on the contrary, always to be a rational
response by a player once he perceives his opponent has escalated the
conflict by choosing C. In the case of Row, for example, if Column
has escalated to (4,1), he (Row) does immediately better by moving
the game to (2,2), from which neither player would have an incentive

to depart, as we showed earlier.

This logic does not hold in Chicken, which reverses the two worst
outcomes of the players in Prisoners' Dilemma. Thus, the CC outcome

is (4,2), and CC is (1,1), in Chicken. Now Row. at (4,2), would appear

15
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irrational in threatening to retaliate by moving to (1,1), which is the
principal problem we analyze in our quantitative, sequential anaiysis

of Chicken as a model of deterrence.

In theory, players solve this problem by precommitting themselves
to carry out threats, despite the irrationality of doing so for the
threatener. In practice, one of us has argued, this takes form in
terms of the operational procedures the superpowers have set in place

to respond, if attacked, to a nuclear first strike.9

We assume that the same kind of precommitments to retaliate can be
made in the case of the Deescalation Game. 1In this game, however, it
is the combination of escalation and retaliation probabilities that may
make initial escalation for, say, Row, from (r3,c3) -~ rather than

subsequent retaliation by Column from (r ) —=- irrational.

41
In the absence of an adequate precommitment to retaliate on the

part of Column, Row may think that he can impose a small probability

of escalation without serious repercussions, although this subjects

Column to his worst outcome. But in our model Column's retaliation

probability assures Row that "too high" an escalation probability would

be irrational for Row, because it would carry the game from (r3,c3)

to (rz,cz).

Put another way, a precommitment to retaliate with a probability
above a particular level -- to be specified later -- renders initial
escalation unprofitable. This is a precommitment that seems unproblem-
atic, unlike in Chicken. More relevant to the problem of commitment

in Prisoners' Dilemma is a player's ability to precommit himself never

16




to escalate, which we show has a surprising and salutary consequence

in the Deescalation Game under certain conditions. In either event,
we assume that players can precommit themselves to strategies -- esca-
latory, probabilistic, or certain -- so that there is never any doubt

on the part of an opponent that they will be implemented.

The quantitative questions we next address in our game~theoretic
analysis are what combinations of escalation and retaliation probabil-
ities (i) maximize the payoff a player can guarantee himself of,
whatever his opponent does, (ii) 1lead to Nash equilibria, and
(iii) induce cooperative choices that allow players to escape the trap
of mutual noncooperation. We in fact show that there are escape routes,
which is why in the title of this paper we call deescalation "rational"
and refer to our extension and refinement of Prisoners' Dilemma as the

Deescalation Game.

4, Rational Play in the Deescalation Game

Consider the Deescalation Game from Row's vantage point. In
Prisoners' Dilemma, by choosing his dominant strategy C, he can guaran-
tee himself a payoff of at least Ty, whatever Column chooses. This

guaranteed minimum is Row's security level. By comparison, because Row

chooses probabilities of certain actions and reactions, rather than
strategies themselves, in the Deescalation Game, it is by no means
obvious what he can guarantee himself of, independent of Column's

(probabilistic) choices.

In the Appendix we show that in fact Row can guarantee himself

the same value he can in Prisoners’ Dilemma, namely r We do this by

9

calculating, first, the value of Row's expected payoff, ER’ when Column,
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by his choice of t and p, makes it as small as possible. We then assume
that Row, by his choice of s and q, seeks to maximize this minimum value

of ER. The resulting maximin of ER is Row's security level, for it is
the value that Row can assure himself of even if Column seeks to mini-

mize ER.

There are two ways that Row can guarantee himself at least his
maximin value: by choosing any of his strategies with (i) s = 0 and
q arbitrary, or (ii) q = 0 and s arbitrary. In the former case, Row
escalates with certainty; if Column also escalates or retaliates with
certainty, Row obtains Iy» otherwise a higher expected payoff (because
it includes r, with some positive probability when Column does not
retaliate). 1In the latter case, Row never escalates but always retal-
iates; 1f Column escalates witrh certainty, Row ensures himself of r,3
otherwise his expected payoff is greater when Column does not (because

it includes r. with some positive probability).

3

Only when Column always escalates (t = 0) does Row suffer his

security level of r, when he chooses any of his maximin strategies.

2

When t > 0, by contrast, Row always can do better than r In this

9
case, however, which maximin strategy serves him best depends on
Column's choice of p, as shown in the Appendix. Column's maximin

strategies and security level are analogous, because of the symmetry

of the Deescalation Game.

Maximin strategies, especially in variable-sum games like the
Deescalation Game, are conservative in the extreme, for they presume

that one'c opponent desires to minimize one's payoff, even if it hurts

him to do so. By contrast, in constant-sum games maximin strategies
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(which are also minimax strategies -- minimize an opponent's maximum
payoff) are more defensible because hurting an opponent always helps

oneself.

If perhaps overly conservative, however, each player's maximin

strategy of escalating with certainty,

s = 0, q arbitrary; t = 0, p arbitrary, (3)

results in a Nash equilibrium, which we call the Escalation Equilibrium.

This equilibrium, of course, corresponds to the unique Nash equilibrium
at (rz,cz) in Prisoners' Dilemma. Since a player who escalates forgoes
any opportunity to retaliate in the Deescalation Game, the Escalation
Equilibrium is independent of whatever retaliation probabilities the

players choose in this game.

Auspiciously, the Escalation Equilibrium is not unique in the De~
escalation Game. As shown in the Appendix, there is a second Nash Equil-

ibrium,

’ (4)

which we call the Deescalation Equilibrium. It says that a player

(say, Column) will never escalate (t = 1); but in response to escalation
by Row, sometimes Column will not retaliate (with nonretaliation proba-
r.,-r

i-r ) and cther times he will (with retaliation probability
2

bility p =

r,-r
I-p >

l-r2 ). More accurately, Column will choose actions in response

to any prior (escalatory) actions by Row with a retaliation probability

19
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r,~-r

l--r2 *

greater than the threshold value,

Why this threshold value? As shown in the Appendix, this is the

value that makes Row's expected payoff, E independent of his choice

R?
of s. If Column's retaliation probability exceeds this threshold,
however, Row would (irrationally) decrease ER should he deviate from

s =1 (i.e., by choosing s < 1). Yence, given Column's retaliation
probability is above the threshold valve, Row maximizes ER by choosing
s = 1 and will not have an incentive to deviate. For analogous reasons,
Column will not deviate from the Deescalation Equilibrium, rendering

the resulting outcome stable. This outcome, of course, corresponds to

the (r3,c3) compromise in Prisoners' Dilemma.

Perhaps the most significant feature of the Deescalation Game is
that it makes the compromise outcome stable, even though this outcome
is highly unstable in the underlying Prisoners' Dilemma game. This
stability is due to the fact that the values of the two off-diagonal
outcomes of Prisoners' Dilemma, which give Row 4 at one outcome (lower
left in Figure 1) and Column 4 at the other (upper right in Figure 1),
are diminished to expected values less than I, and Cy by the Deescalation
Equilibrium strategies. The high probability of retaliation substan-

tially dilutes the value of a win, r, or Cps with the value of the much

4
less desirable trap outcome, r, Or c,. Meanwhile, the payoffs at compro-
mise, ry and Cq, are unaffected in the passage from Prisoners' Dilemma

to the Deescalation Game, making them, in relative terms, the most
attractive when retaliation is likely. When both sides are prepared to

retaliate, nonescalation is each player's best strategy, and compromise

the mutually best outcome.
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We demonstrate in the Appendix, using an exhaustive search for

Nash equilibria, that there are none other than the Escalation Equili-
brium and the Deescalation Equilibrium in the Deescalation Game. One
effect, then, of high retaliation probabilities in this game is to
transform the cooperative outcome from a next-best nonequilibrium (in
the underlying Prisoners' D .lemma game) to a best equilibrium (in the
Deescalation Game) -- without changing the payoffs to the players, The
Deescalation Equilibrium, however, is not the product of dominant
strategies in the Deescalation Game, for one player's Deescalation
Equilibrium strategy is best if the other player chooses his, but defi-

nitely rot best if the other player cnocses certain other strategies.

At the same time that (r3,c3) is stabilized in the Deescalation
Game, the stability of (r2,c2) is called into question -- even though
it corresponds to a Nash equilibrium. To see why, assume that the

players begin at the outcome defined by

$=0,9=45 =0, p=rpy; or (0,45;0,p,) , (5)

where P, and q, are arbitrary. Since the players escalate with

certainty, they receive payoffs (r2,c2) at this Escalation Equilibrium.

Now let Column change his strategy to t = t p = 0, so the

0’

strategies become
(€,q03t50) (6)

where Co’umn escalates with arbitrary probability to > 0 and always
retaliates (p = 0). The players still receive (r2,c2), but Column has

changed his Nash-equilibrium strategy (i.e., probabilities) without cost
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to himself.

If Row next changes his Nash-equilibrium strategy to never esca-

late vut always retaliate, giving
(l,O;tO,O),
his expected payoff will be

ER(l,O;t s = tr, + (1 - to)r2 .

0’ 03

This is clearly better for him (since t. > 0) than r, that he receives

0
at the Deescalatiou cquilbrium and at (6), so he would be motivated
to switch from (6) to (7). 1In fact, switching from s = 0, q = qq to

s =1, q = 0 maximizes Row's expected payoff as long as Column plays

t = to,p 0.

But now, if t, < 1, Column can respond to the situation at

0
(7) by changing his strategy to never escalate but always retaliate,

too, giving
(1,0;1,0).

This raises EC for him from

EC(tO,O;l,O) = t0c3 + 0 - to)c2

at (7) to

E;(1,051,0) = c,

at (8), which is a Deescalation Equilibrium with payoffs (r3,c3) for
both players. Again, Column's move from (7) to (8) maximizes Column's

return, assuming Row's strategy is fixed.
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Thereby the players can move progressively along the path defined

by

Costless Beneficial Beneficial

with only the first step that triggers the process not positively bene-

ficial to the player (Column) who makes the initial move from the Esca-
10

lation Equilibrium. But it is a costless change for Column, SO presum-~

ably he will make it if he anticipates that it will irigger the subse-

quent (beneficial) moves by Row and Crlumn, respectively.

Indeed, the "trigger condition' can be relaxed to ty > 0,
-1,
PA < at (6) in the sense thac any such (t.,p.) chosen by Column
0 l-r2 0’"0

would motivate Row to choose s = 1, q = 0 at (7). However, use of any

r.-r

1-r

would reduce (temporarily) Column's payoff

Pg satisfying 0 < Pg <

2

to
Ec(ty:pg30,9g) = ¢, = topgey -

As noted previously, Py = 0 is costless, so the (5)=--=>(6)~—=>(7)-~->(8)
path is the most persuasive -- no player would ever suffer any loss in
departing from his Nash-equilibrium strategies, making the need for
irrevocable precommitments less. Obviously, the roles of the players
that are indicated above can be reversed to trace another path from the

Escalation to the Deescalation Equilibrium.
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It is interesting to note in the Deescalation Game that it is

the Escalation Equilibrium which exhibits some instability, for a cost-
less perturbation by one player induces an immediate shift away from
the Escalation Equilibrium toward the Deescalation Equilibrium. The

perturbation triggering the shortest path to deescalation is t = t, = 1,

0
p = 0. It is also noteworthy that this particular erturbation strat—

egy -~ never escalate, but always retallate -- bears a strong resemblance
to the tit-for-tat strategy recommended by Axelrod for *cerated

Prisoners' Dilemma.ll

We do not, however, assume repeated conditicned play of Prisoners'
Dilemma but only an ability to retaliate for an initial untoward action
of an opponent. Remarkably, this retaliatory ability turns out to be
sufficient both to deter an opponent and induce him to shift to the
same deterrent strategy, from which he also will benefit. Once both
players have adopted -- and precommitted themselves to -- this posture,
their payoffs at the Deescalation Equilibrium are not only better for
both than at the Pareto-inferior Escalation Equilibrium but they are
also highly stable: both players would do immediately worse by
deviating from s = t = 1 (never escalate) because of possible retal-

iation.

However, they can afford to raise p = q = 0 (certain retaliation)
up to the threshold values given earlier [see (4)] for the Deescalation
Equilibrium -- thereby making retaliation less than certain -- and
still maintain stability. In other words, each player's r. taliatory
threat need only be probabilistic -- or perhaps a certain equivalent

(i.e., a lower-level retaliatory action) that signals more serious
g
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retaliation is possible. This possibly may make it more credible, as

we argued in the Deterrence Game based on Chicken,12 except that each
play:r in tie Deescalation Game -- and Prisoners' Dilemma on which it is
based —- has an evident incentive to carry out a threat because he

immediately benefits, even if the resulting outcome is Pareto-inferior.

In fact, whether the underlying game is Chicken or Prisoners'
Dilemma, the purpose of threatening retaliation is to deter an opponent
from deviating from (r3,c3), whether or not it is costly to carry out
a threat once he does. Thus, the logic underlying threats that stabi-~

lize (x ,c3) in both games is exactly the same. But beyond the use of

3
retaliatory threats to render this outcome an equilibrium in the

Deescalation Game, we believe even more hopeful is our finding that
there is a costless, and in general beneficial, way for the players

to escape the (rz,cz) trap and reach the (r3,c3) compromise outcome

in this game.

6. Conclusions

Arms races are not only terribly costly but also may increase the
probability of war between two states under certain conditions.13 When
these states are the superpowers, and the costs are in the hundreds
of billions of dollars -- with nuclear holocaust a possible consequence

of fighting that may erupt in an extreme crisis -- then there is good

reason to ponder how to deescalate the superpower arms race.

The arms race has persisted, we believe, because both sides see
it as a Prisoners' Dilemma, with little hope of escaping the (2,2)
trap. To be sure, the superpowers have been able to reach some arms-

control agreements. For the most part, however, they have been of a
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very limited nature, and even some of these seem in trouble today
because of mistrust and suspicions of cheating as well as new techno-

logical developments.14

The Deescalation Game, insofar as it reflects the quantitative
choices about arms expenditures that each side makes -- and the
possible responses to the other side's perceived expenditures ~- gives
some basis for being sanguine. First, by stabilizing the coupromise
outcome (r3,c3), and, second, by showing that there is a rational
path from the trap (r2,c2) to the compromise (r3,c3), it suggests how
the Deescalation Equilibrium might suppiant the Escalation Equilibrium
as the rational outcome of this game. Essentially each side must
precommit itself to respond to, but not initiate, escalation. Retal-
iation, while rational in Prisoners' Dilemma (as opposed to Chicken)
once one side has escalated, nevertheless hurts both players at the
resulting Escalation Equilibrium, at least compared to the Deescalation

Equilibrium.

The fact that che players can extricate themselves from the
Escalation Equilibrium by a series of rational moves and responses
in the Deescalation Game is what makes this game a much more pleasant
one to play than Prisoners' Dilemma. If it is also a more realistic
model of Prisoners' Dilemma--type conflicts such as the superpower

arms race, then it suggests a solution, at leist at a conceptual

level, to the pathology of such conflicts when they have the quanti-

tative, sequential character of the Deescalation Game.

We think that arms races, particularly the arms race between the

superpowers, have this character. It requires a leader of imagination

ERIC <6
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to commit himself to deescalatory policies, though to be effective
our model suggests that these need to be combined with the threat of
possible retaliation if the other side does not follow suit. Given
such a carrot-stick combination, there is no great daring that this
posture demands, because, at least in theory, it is costless. In
reality, this may not be entirely so -- for domestic political
reasons, among others -- but we believe our model goes a long way
toward justifying a more conciliatory posture if the threat of retal-

iation is also present and real.
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APPENDIX

We present the details of our analysis of the Deescalation Game
in this Appendix. We begin by calculating the players' maximin
strategies and valuves, and then we determine all Nash equilibria by

an exhaustive search.

The rules of the Deescalation Game are given in the text, where
the payoffs and strategic choices, and their interpretations, are
made explicit. The game is depicted in Figure 2. For convenience,

the expected payoffs of Row (R) and Column (C) are repeated here:
ER(s,q;t,p) = str3+(l—s)t[p+(l—p)r2]+s(l—t)(l—q)r2

+ (l—s)(l-—t)r2

r2+st(r3—r2)+(1—s)tp(l—rz)—s(l—t)qrz; . (1)
EC(t,p;S,q) = stc3+(l—s)t(l—p)c2+s(l—t)[q+(l-q)c2]

+(l—s)(l-—t)c2

c2+st(c3—c2)—(l—s)tpc2+s(l—t)q(l—c2). (2)

To identify Row's maximin strategy, suppose first that s and

q are fixed and notice from (1) that

oE

3 - s(r3—r2)+(l—s)p(l—r2)+sqr

>0,

2
with equality if and only if s = 0 and p = 0. Thus, if Row chooses

s > 0,

?ig ER(s,q;t,p) = mzn ER(s,q;O,p) = mzn {rz—sqrz} = rz(l—sq).
’
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Also, since t 20, p20, and r, < 1,

2

min ER(O,q;t,p) = min {r

+tp(l—r2)} =r
t,p t,p

2 2°

Therefore, for all permissible values of s and q,

min E_(s,q;t,p) = r,(l-sq),
R 2
t,p

so that Row's maximin value is

max mir. ER(s,q;t,p) = max {rz(l—sq)} =r

9°
S’q t.’p S’q

Furthermore, Row can achieve his maximin value r, by choosing any of
his strategies with s = 0 (and q arbitrary), or with q = 0 (and s
arbitrary). It is inter-~sting to note that any of these maximin
strategies yields to Row cxactly his maximin value when t = 0 [see
(1)]; if t > 0, Row may receive more. Specifically, if t > 0 and

p > (r3—r2)/(l—r2), a maximin strategy of the form (s = 0, q arbi-
trary) gives Row his best payoff, whereas if t > 0 and p < (r3—r2)/
(l—rz) Row's preferred maximin strategy is s = 1, q = 0. If p =
(r3—r2)/(l—r2), Row would be indifferent among his maximin strategies

because

ER =r, + t(r3 - rz)—s(l—t)qrz,

which yields the same value, r2+t(r3—r2), in every case.

It follows from the symmetry of the Deescalation Game that

Column's maximin value is c, and that any of Column's strategies with

t =0 or p =0 are maximin strategies, guaranteeing him a payoff of
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at least Cye The properties of Column's maximin strategies are

analogous to those of Row's, as discussed above.

We turn now to the search for Nash equilibria in the Deescalation
Game. Our search is organized according to the values of s and t at

the equilibrium.

Case 1: t = 0.

If t = 0, then (1) becomes
Eg(s,q30,p) = r,(1-sq),

so that R's best reply to t = 0 is either s = 0 (and q arbitrary) or
q = 0 (and s arbitrary). By symmetry, t = 0 (and p arbitrary) is
also a best reply for C against s = 0. It is easy to verify directly

that all strategy combinations
s = 0, q arbitrary; t = 0, p arbitrary, (3)

are equilibria. We call (3) the Escalation Equilibrium, since it is

characterized by both players' escalating with certainty. At the
Escalation Equilibrium, the outcome of the Deescalation Game is always
the trap outcome of the underlying Prisoners' Dilemma game, yielding

the players (rz,cz).

We now show that (3) are the only equilibria consistent with
Case 1 by considering C's response tc R's strategy choice s > 0,

q = 0. By (2),

EC(t,p;s,O) = c2+st(c3—c2)—(l—s)tpc2.
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If 0 < s < 1, then

max E_(t,p;s,0) = max E_(t,0;s,0)
t,p C t C
b4

= max{c2+st(c3"c2)} = c,+s(c

c -C,),
p 270837

which ocenrs at t = 1 and p

0. If s = 1, this maximum is also

c2+s(c3—c2), occurring at t = 1. Therefore, C's best reply to
s >0, q = 0 includes t = 1, so tha. no strategy combination includ-

ing s > 0, q =0 and t = 0 (as assumed in Case 1) is an equilibrium.

Case 2: s = 0.

By an argument analogous to that for Case 1, the only equilibrium

consistent with s = 0 is the Escalation Equilibrium (3).

Case 3: t = 1.

If t = 1, then (1) becomes

Ex(s,q51,p) = ry*s(ry-r,)+(1-s)p(l-1,)

[r2+p(l—r2)]+S[r3—r2-p(l—r2)]. (9

From the final expression of (9) it follows that s = 1 is R's best

reply if

Symmetry places an analogous condition on q in order tha: t = 1 be

C's best response to s = 1. It is easy to verify directly that

sy t=1, p = 1-z. * (4)

is an equilibrium, which we call the Deescalation Equilibrium. Observe

that the Deescalation Equilibrium always results in the compromise out-
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come of the underlying Prisoners' Dilemma game, yielding the players

(r3)c3)’

To show that there are no equilibria other than (4) consistent
with Case 3, we note first that, if p = (r3—r2)/(1—r2), (9) implies
that s = 0 would be R's best reply; but we have already proven (Case
2) that there are no equilibria with s = 0 and t = 1. The only
remaining possibility is the combination 0 < s < 1, t =1, and p =

(r3—r2)/(l—r2). But now (2) gives

oE

C.-— -—
3p = -(1 s)tc2 <0

since 0 < s <l and t = 1. Thus p = 0 at any equilibrium with
0<s<1land t =1, contradicting the inference [from (9)] that

p = (r3—r2)/(l—r2) > 0.

Case 4: s = 1.
As in Case 3, the only equilibrium with s = 1 is the Deescalation

Equilibrium (4).

Case 5: O0<s<1l,0<t< 1

In this case, it follows from (2) that

JE

C _ _ .
ap = (l S)tCz ~ 0,

so that p = 0 is necessary at any equilibrium. Similarly, q = 0 is

necessary also. But now (1) shows that

ER(s,O;t,O) = +st(r3— )

Ty )

which, since t > 0, R can maximize only at s = 1. Hence there are

no equilibria consistent with Case 5.
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